On the Use of Weak Automata for Deciding Linear Arithmetic with Integer and Real Variables
نویسندگان
چکیده
This paper considers finite-automata based algorithms for handling linear arithmetic with both real and integer variables. Previous work has shown that this theory can be dealt with by using finite automata on infinite words, but this involves some difficult and delicate to implement algorithms. The contribution of this paper is to show, using topological arguments, that only a restricted class of automata on infinite words are necessary for handling real and integer linear arithmetic. This allows the use of substantially simpler algorithms and opens the path to the implementation of a usable system for handling this combined theory.
منابع مشابه
An Effective Decision Procedure for Linear Arithmetic with Integer and Real Variables
This paper considers finite-automata based algorithms for handling linear arithmetic with both real and integer variables. Previous work has shown that this theory can be dealt with by using finite automata on infinite words, but this involves some difficult and delicate to implement algorithms. The contribution of this paper is to show, using topological arguments, that only a restricted class...
متن کاملConvex Hull of Arithmetic Automata
Arithmetic automata recognize infinite words of digits denoting decompositions of real and integer vectors. These automata are known expressive and efficient enough to represent the whole set of solutions of complex linear constraints combining both integral and real variables. In this paper, the closed convex hull of arithmetic automata is proved rational polyhedral. Moreover an algorithm comp...
متن کاملUpper Bounds on the Automata Size for Integer and Mixed Real and Integer Linear Arithmetic (Extended Abstract)
Automata-based decision procedures have proved to be a particularly useful tool for infinite-state model checking, where automata are used to represent sets of real and integer values. However, not all theoretical aspects of these decision procedures are completely understood. We establish triple exponential upper bounds on the automata size for FO(Z,+, <) and FO(R, Z,+, <). While a similar bou...
متن کاملOn iterating linear transformations over recognizable sets of integers
It has been known for a long time that the sets of integer vectors that are recognizable by finite-state automata are those that can be defined in an extension of Presburger arithmetic. In this paper, we address the problem of deciding whether the closure of a linear transformation preserves the recognizable nature of sets of integer vectors. We solve this problem by introducing an original ext...
متن کاملA Generalization of Semenov's Theorem to Automata over Real Numbers
This work studies the properties of finite automata recognizing vectors with real components, encoded positionally in a given integer numeration base. Such automata are used, in particular, as symbolic data structures for representing sets definable in the first-order theory 〈R, Z,+,≤〉, i.e., the mixed additive arithmetic of integer and real variables. They also lead to a simple decision proced...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001